
Relativistic calculation of magnetic linear response functions using the

Korringa–Kohn–Rostoker Green's function method

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys.: Condens. Matter 13 8551

(http://iopscience.iop.org/0953-8984/13/38/302)

Download details:

IP Address: 171.66.16.226

The article was downloaded on 16/05/2010 at 14:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/13/38
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OFPHYSICSPUBLISHING JOURNAL OF PHYSICS:CONDENSEDMATTER

J. Phys.: Condens. Matter13 (2001) 8551–8564 PII: S0953-8984(01)24869-3

Relativistic calculation of magnetic linear response
functions using the Korringa–Kohn–Rostoker
Green’s function method

M Deng, H Freyer, J Voitländer and H Ebert

University of Munich, Physical Chemistry, Butenandtstrasse 5-13, D-81377 München, Germany

Received 16 May 2001
Published 7 September 2001
Online atstacks.iop.org/JPhysCM/13/8551

Abstract
The relativistic KKR (Korringa–Kohn–Rostoker) Green’s function method of
band-structure calculation supplies an extremely flexible basis for calculating
magnetic linear response functions of solids. An important feature of this
approach is that it accounts properly for the influence of all relativistic effects.
A brief introduction to this formalism is presented, together with some recent
extensions to it. In particular, the inclusion of the orbital magnetization
density induced by an external magnetic field allows a direct comparison
with experiment for many different properties. This is demonstrated for the
induced magnetic form factor, the magnetic susceptibility and the Knight shift
of transition metals. A further appealing feature of the KKR formalism is that it
is applicable in principle to any complex system. This property is exemplified
by applications for the disordered alloy systems AgxPd1−x and AgxPt1−x that
are treated with the help of the coherent potential approximation alloy theory.

1. Introduction

The use of the KKR (Korringa–Kohn–Rostoker) Green’s function method to calculate magnetic
linear response functions—for example, the magnetic susceptibility—was first suggested
nearly 20 years ago [1]. In particular, the occurrence of inter-site effects on the Knight shift
[2] has been discussed on that basis. Also the extension of the formalism to include relativistic
effects has been worked out in the past [3], but the first applications became possible only a
few years ago [4]. Recently, several important extensions of this very flexible approach were
introduced [5, 6]: in calculating the Stoner enhancement of the Pauli spin susceptibility, the
induced magnetization distribution is calculated self-consistently. In addition, the so-called
Van Vleck orbital susceptibility [7] is calculated in a relativistic way using the KKR formalism.
As a new feature of such calculations, a Stoner-like enhancement of the orbital susceptibility
is accounted for by making use of the Brooks orbital polarization (OP) scheme [8, 9].

The calculation of the induced spin and orbital magnetization gives access to many
interesting magnetic response functions—for example, the induced magnetic form factor.
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Application of the KKR formalism in connection with the coherent potential approximation
(CPA) alloy theory to disordered alloy systems seems to be especially interesting, because
susceptibility and Knight shift measurements have often been used in the past to monitor the
changes in the electronic structure of transition metals upon alloying. In particular, the alloy
system AgxPd1−x has been seen in the past as a prototype for a system behaving according to
the rigid-band model [10]. Indeed, experimental data on the magnetic susceptibility [11] or
the electronic specific heat [12], that represent the electronic structure in a global way, seemed
to support this point of view. However, experiments that give information on the electronic
structure in a component-resolved way—for example, ones based on the nuclear spin–lattice
relaxation rate [2, 13]—cast doubt on this. Unfortunately, in the case of AgxPd1−x, only Ag is
easily accessible by means of NMR, while the Pd NMR became detectable only recently for
Pd-rich AgxPd1−x alloys [14]. For this reason, the isoelectronic system AgxPt1−x was seen as
a very attractive alternative, that allows NMR investigations on both alloy partners [15–17].

Because relativistic effects have a pronounced influence on NMR properties even for
relatively light elements and because of the high atomic number of Pt, the use of the fully
relativistic version of the KKR-CPA formalism seems to be indispensable for dealing with the
alloy system AgxPt1−x. Corresponding results for the magnetic susceptibility and the Knight
shift for the two isoelectronic alloy systems AgxPd1−x and AgxPt1−x will be presented in the
following and discussed in comparison with experimental data.

2. Theoretical framework

Within the relativistic KKR band-structure method used here, the electronic ground state of a
paramagnetic solid is represented by the corresponding Green’s functionG(�r, �r ′, E) [18]:

G(�r, �r ′, E) =
∑
��′

Zn
�(�r, E)τnn′

��′(E)Zn′×
�′ (�r ′, E) −

∑
�

[
Zn

�(�r, E)J n×
� (�r ′, E)�(r ′ − r)

+J n
�(�r, E)Zn×

� (�r ′, E)�(r − r ′)
]
δnn′ (1)

for �r (�r ′) within the atomic celln (n′). Here the quantityτnn′
��′(E) is the so-called scattering

path operator [19] that represents all multiple-scattering events in a many-atom system in
a consistent way (see below). The four-component wave functionsZn

� and J n
� are the

properly normalized regular and irregular solutions of the corresponding single-site Dirac
equation for siten. The appropriate relativistic spin–orbit and magnetic quantum numbers
κ andµ, respectively, have been combined into� = (κ, µ) [20]. Finally, the superscript
× in equation (1) indicates transposition together with complex conjugation restricted to the
spin-angular part of the wave functions.

This platform allows one to deal with a distortion of the system due to an external magnetic
field by using the Dyson equation

GB = G + G �HG. (2)

Here we restricted the modification ofG to first order with respect to the perturbation
Hamiltonian�H; that means a linear response is assumed. In the simplest approach, the
Hamiltonian�H represents a coupling only to the spin of the electrons [3]:

�Hspin(�r) = �HB
spin + �Hxc

spin(�r). (3)

That is,

�Hspin(�r) = βσzµBBext + βσzK
xc,n
spin(�r)γ n(�r)χn

spinµBBext (4)

whereβ is one of the standard Dirac matrices andσz is thez-component of the spin operator
[20]. The first term in this expression is the conventional Zeeman term, while the second



Relativistic calculation of magnetic linear response functions using the KKR GF method 8553

one takes it into account that, because of the spin magnetization induced by the external
magnetic fieldBext, the exchange correlation potentialVxc(�r) will change. In equation (4) we
made the usual assumption that this term depends linearly on the induced spin magnetization
mspin(�r) with the corresponding interaction kernelK

xc,n
spin(�r) [21]. For�r within the atomic cell

n, mspin(�r) in turn can be replaced by the productγ n(�r)χn
spinBext with γ n(�r) the normalized

spin density andχn
spin the local spin susceptibility for siten. Usually,γ n(�r) is approximated

by the average over the square of the wave functions|ψ(EF)|2 at the Fermi level.
UsingGB as given in equation (2) together with equation (4) to calculate the induced spin

magnetizationmn
spin(�r) for an atomic siten, one now arrives at

mn
spin(�r) = −µB

π
�

∫ EF

dE
∑
n′

∫
�WS

n′
d3r ′ βσzG(�r, �r ′, E)

×
(
βσz + βσzK

xc,n
spin(�r ′)γ n′

(�r ′)χn′
spin

)
BextG(�r ′, �r, E) (5)

where�r ′ is restricted to the atomic celln′. For a pure system the corresponding Pauli spin
susceptibilityχn

spin does not depend on the siten and one gets the conventional expression for
the Stoner-enhanced Pauli spin susceptibilityχn

spin:

χspin = Sχ0
spin. (6)

HereS is the so-called Stoner enhancement factor, that is usually written as(1 − Iχ0
spin)

−1,

with I the Stoner exchange–correlation integral [21] andχ0
spin the unenhanced Pauli spin

susceptibility that is obtained if the second term in equation (4) is ignored. For more complex
systems with more than one atom type, equation (5) leads to a system of linear equations for
the local susceptibilitiesχn

spin. As a consequence, the Stoner enhancement factor will also
depend on the lattice site or atom type.

The Hamiltonian in equation (3) accounts only for the coupling of the external magnetic
field to the electronic spin. Within a non-relativistic theory, the coupling to the orbital degree of
freedom leads, in addition to the spin susceptibility, to the Langevin and Landau diamagnetic
as well as to the Van Vleck paramagnetic susceptibility [2, 7]. The Langevin diamagnetic
susceptibilityχdia can be calculated straightforwardly in a relativistic manner [22]. This
applies also for the Van Vleck susceptibilityχVV that is derived from the expectation value
of thez-component of the orbital angular momentum operatorlz and using the perturbation
Hamiltonian [5, 6]:

�Horb = βlzBext. (7)

CalculatingχVV within the framework of plain spin-density functional theory (SDFT),
there is no modification of the electronic potential due to the induced orbital magnetization.
Working instead within the more appropriate current-density functional theory, however, there
would be a correction to the exchange–correlation potential just as in the case of the spin
susceptibility giving rise to a Stoner-like enhancement. Alternatively, this effect can be
accounted for by adopting the Brooks orbital polarization (OP) formalism [8, 9]. This leads to
expressions for the enhanced Van Vleck susceptibilityχVV completely analogous to equations
(3)–(5).

Within a non-relativistic formalism the spin and orbital degrees of freedom are completely
decoupled; this means that the cross-terms〈σzGlzG〉 and〈lzGσzG〉 vanish. However, Yasui
and Shimizu [23], who used a rather different theoretical approach to deal with the magnetic
susceptibility of transition metals, pointed out that these cross-terms do not vanish if the spin–
orbit coupling is present. However, these cross-terms, denoted asχSO andχOS, respectively,
in the following, turn out to be much smaller thanχP or χVV .
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Figure 1. Spherically averaged spin and Van Vleck r-dependent susceptibilities χ spin(r) and

χVV(r), respectively, weighted with r 2 for Nb, Mo and Rh.

The remaining diamagnetic Landau susceptibility χL is normally assumed to be small
compared to all the other contributions. In addition, it is rather cumbersome to calculate [7].
For these reasons it has not been considered here (see below).

The relativistic KKR formalism sketched here has been employed by Staunton and co-
workers to calculate the spin susceptibility of the pure elements Co, Sc and Y [4, 24] using the
approximation for the normalized spin γ (�r) mentioned above. Here we apply this approach
to binary disordered alloys making use of the CPA alloy theory. For this purpose one has
to deal with the configurational average for expressions of the type 〈ÂGB̂G〉, with Â and
B̂ being arbitrary operators. The conceptual problems connected with this average within
the framework of the KKR-CPA were first discussed by Staunton [3] for the case of spin
susceptibility, which means for Â = B̂ = βσz on the basis of the work of Durham et al [25].
A very detailed investigation was made later by Butler [26] who studied the problem in the
context of the electronic conductivity for which Â = B̂ = �j is the current-density operator. For
the applications to be presented below, it turned out that using the approximation 〈ÂG〉〈B̂G〉
is well justified, which means that the vertex corrections defined as 〈ÂGB̂G〉 − 〈ÂG〉〈B̂G〉
could be ignored.

3. Induced magnetization and form factor

Initially the formalism presented above was primarily meant to calculate the spin susceptibility
χspin. However, equation (5) shows that the primary quantity to be considered is the induced
spin magnetization mspin(�r). In the top panel of figure 1 corresponding results for mspin(�r) are
shown for Nb, Mo and Rh in terms of the r-dependent susceptibility χspin(r) = γ (�r)χspin. As
mentioned above, the normalized spin density γ (�r) is in general approximated by averaging
the square of the wave functions at the Fermi level. This approximation can be used as an initial
guess for an iterative calculation of the true r-dependence of γ (�r) on the basis of equation (5).
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Although this procedure leads only to minor modifications to γ (�r), these can lead to quite
important corrections for the Stoner enhancement of χspin.

Completely analogously to the induced spin magnetization mspin(�r), one may introduce
the induced orbital magnetization morb(�r) corresponding to the operator µBβlz. For Nb,
Mo and Rh the calculated morb(�r) is given in the lower panel of figure 1 in terms of the
corresponding r-dependent Van Vleck susceptibility χVV(r). As one notes, χVV(r) differs
in general in a rather pronounced way from its spin counterpart. The reason for this is that
χspin(r) is determined primarily by states at the Fermi level, while all states of the occupied
part of the valence band contribute to χVV(r).

With the induced spin and orbital magnetization available, one immediately gets access to
the corresponding induced magnetic form factors fspin(�q) and forb(�q), respectively. Adopting
the conventional approach [27], these induced form factors can be obtained as functions of the
scattering vector �q from the expressions

fspin(�q) = 1

µspin

∫
�WS

d3r j0(�q . �r)mspin(�r) (8)

forb(�q) = 1

µorb

∫
�WS

d3r (j0(�q . �r) + j2(�q . �r))morb(�r). (9)

These can be directly compared with experimental data stemming from elastic neutron
scattering experiments by taking the appropriate average:

f̄ (�q) = fspin(�q)χspin + forb(�q)χVV

χspin + χVV
(10)

if the small additional contribution to the experimental form factor corresponding to the
Langevin diamagnetic susceptibility χdia is accounted for. Figure 2 shows the resulting
theoretical induced magnetic form factor f̄ for V and Cr in comparison with experimental data.
The difference between the spatial distributions of the induced spin and orbital magnetization
seen in figure 1 is obviously reflected by different dependences of the corresponding induced
magnetic form factors on the scattering vector �q. This implies in particular that comparison
with experiment supplies a rather severe check for the relative magnitude of the calculated spin
and orbital susceptibilities χspin and χVV. As can be seen from figure 2 this is quite different
for V and Cr and found to be in excellent agreement with experiment.

4. Magnetic susceptibility

Most susceptibility and NMR measurements on AgxPd1−x and AgxPt1−x were done in the past
to obtain information on the electronic structure of these isoelectronic alloy systems. The most
prominent feature of the electronic band structure of the common alloy partner Ag is its rather
narrow d band that has a width of only 3.1 eV and lies about 3.2 eV below the Fermi level. Pd
or Pt, on the other hand, have d bandwidths of about 7.4 eV with the Fermi level cutting the
d-band complex. As a consequence of the rather different properties of these elements, alloy
formation has a rather strong impact on their electronic structure.

Like the previous calculations on AgxPd1−x by Pindor et al [31] and Winter and Stocks
[32] and on AgxPt1−x by Ebert et al [33], the present calculations give a split-band structure
with separate Ag and Pd (Pt) bands for all concentrations. The high-energy hump arises from
Pd (Pt) and the low-energy one is due to the Ag. In addition, one finds that the bandwidth of
Ag in AgxPd1−x gets larger with increasing Ag content, while that of Pd decreases at the same
time. A similar behaviour is found for AgxPt1−x.
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Figure 2. The theoretical induced magnetic form factor f̄ for the transition metals V and Cr
together with corresponding experimental data (V: [28]; Cr: [29]). For Cr, theoretical data
obtained by Oh et al [30] have been added.

Since the Ag d band is located much lower in energy than that for Pd (Pt), the Ag d band
remains fully occupied, when Ag is alloyed with Pd (Pt). As a consequence, the density of
states (DOS) at the Fermi energy is dominated by the Pd (Pt) d states for most concentrations.
The increase in Ag content leads to a shift of the Pd (Pt) bands towards lower energies. This
gives rise to a monotonic and rapid decrease of the DOS at EF with the filling of the Pd (Pt) d
bands as can be seen in figure 3.

This feature is reflected by many different physical properties—for example, the electronic
specific heat coefficient γ [12]. In the past it has been assumed that the magnetic susceptibility
χ should also directly reflect the DOS at the Fermi level [11]. In particular, the rapid decrease
of χ of Pd when Ag is added has been interpreted in the spirit of the rigid-band model to be
a consequence of the filling of the Pd d band with the additional Ag valence electrons. The
following investigations will show that this point of view is oversimplified for many different
reasons.
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spin, and with Stoner enhancement, χα

spin.

The calculated results for the Pauli contributions to the magnetic susceptibility of the
various alloy partners in AgxPd1−x and AgxPt1−x are shown in figure 4. As expected from
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VV , and with OP enhancement, χα

VV.

the behaviour of the partial DOS for these two alloy systems, the relatively high unenhanced
Pauli susceptibilities χ

0,Pd
spin and χ

0,Pt
spin of pure Pd and Pt, respectively, decrease rapidly with

increasing Ag content. The partial susceptibility χ
0,Ag
spin of Ag, on the other hand, is rather small

and hardly varies with concentration for both alloy systems. Because χ
0,Ag
spin for AgxPd1−x is

much smaller than χ
0,Pd
spin and because it is very similar to χ

0,Ag
spin for AgxPt1−x, it has been

omitted on the left side of figure 4.
As one can see from figure 4, the Stoner enhancements of the Pauli spin susceptibilities

for pure Pd and Pt are rather large. Accordingly, these elements completely dominate the
total magnetic susceptibility on the Ag-poor side for the two alloy systems. Because the
Stoner enhancement also gets weaker when the spin susceptibility χ0

spin decreases, the partial
susceptibilities of Pd and Pt decrease more rapidly with increasing x than the bare density of
states at the Fermi level shown in figure 3 suggests.

For the alloy partner Ag, on the other hand, the situations are quite different in the two
alloy systems. Here the Stoner enhancement amounts to only some few per cent. Only on the
Ag-poor side is it somewhat more pronounced. On the Ag-rich side, however, it can more or
less be ignored. Again χ

Ag
spin for Ag in AgxPd1−x has been omitted in the left part of figure 4

for the reasons given above.
In figure 5, the Van Vleck contributions without and with the OP enhancement, χ

0,α
VV and

χα
VV, respectively, to the magnetic susceptibilities of each component in the two alloy systems

are shown. The concentration dependency of χα
VV is obviously very different from that of

χα
spin because χα

VV is primarily determined by the filling and width of the d band, while χα
spin

is connected with the DOS at the Fermi level. As can be seen in the figure 5, χPd
VV reduces

continuously due to the relatively strong variation in the filling of the d band of AgxPd1−x
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upon increasing the Ag content x. χPt
VV for Pt in AgxPt1−x, on the other hand, shows a weak

maximum around x = 0.6. On the Ag-poor side, χPd
VV in AgxPd1−x is similar in magnitude to

χPt
VV in AgxPt1−x. However, for large Ag concentrations, χPt

VV is found to be larger than χPd
VV.

The increases of the Van Vleck susceptibilities (χα
VV − χ

0,α
VV ) due to the OP mechanism are

nearly the same for Pd and Pt. In the two cases, they amount to around 4 × 10−6 emu mol−1.
The results for χ

Ag
VV for the two alloys are very similar, showing a slight decrease with

increasing concentration x. In contrast to the case for Pd and Pt, the OP enhancement
contributes a negligibly small amount to χ

Ag
VV for both alloys.

The negative Langevin susceptibility χα
dia, for all components, was found to hardly vary

with concentration x. It more or less compensates for the positive orbital contribution χα
VV of

the corresponding atom. A variation in χα
dia with concentration should primarily arise from

the change of the lattice parameter with concentration [34]. It seems that this effect is not very
pronounced for the alloys under investigation.

In accordance with the strong relativistic effects that can be expected for Pt in AgxPd1−x,
the spin–orbit cross-term contributions χPt

SO and χPt
OS (not shown here), which are almost of

the same magnitude, should not be ignored over the whole concentration range. For Pd in
AgxPd1−x, the corresponding contributions are of the same order on the Ag-poor side as for Pt
in AgxPd1−x, but they are very small on the Ag-rich side. For both alloy systems the cross-term
contributions of Ag can be ignored over the entire composition range.

The magnetic susceptibility of the system AgxPd1−x has been measured by several
authors at various temperatures [11, 13, 35]. The experimental data show that the magnetic
susceptibility of this system depends strongly on temperature but becomes almost independent
of temperature for x > 0.6 (see figure 6). This implies in particular that the strongly
temperature-dependent Pauli susceptibility of Pd contributes dominantly to the total magnetic
susceptibility on the Ag-poor side of AgxPd1−x. However, with the rapid diminishing of the
Pauli susceptibility of Pd with increasing x, the other contributions of Pd and the contributions
of Ag, which are only slightly temperature dependent, become more and more important.

In figure 6, the calculated partial susceptibility χα = χα
spin + χα

VV + χα
SO + χα

OS + χα
dia as

well as the total susceptibility χ = ∑
α xαχα for the alloy systems AgxPd1−x and AgxPt1−x

are shown together with the corresponding experimental data [13, 16, 35]. For pure Pd, the
calculated total magnetic susceptibility is found to be in very good agreement with the value
measured at 4 K [36]. Keeping in mind that the Landau susceptibility term χα

L has been
ignored, one can say that the corresponding experimental data for AgxPd1−x are fairly well
reproduced by the calculations over the entire concentration range.

Because the fcc metals Ag and Pt form a peritectic system and therefore have only limited
solid solubility, metastable single-phase crystalline AgxPt1−x alloys had to be prepared by
rapid quenching from the melt. This allowed us to perform experimental investigations of the
magnetic and NMR properties of this alloy system over the whole range of concentrations
[16]. As for AgxPd1−x, figure 6 demonstrates that the susceptibilities calculated within this
work reproduce the experimental data for the alloy system AgxPt1−x measured at 4.2 K [16]
very well.

5. Knight shift

It was found in many experimental investigations that the Knight shifts of the noble metals
Au, Ag and Cu are positive but become negative if they are dissolved as impurities in the
transition metals Pd and Pt [2, 13, 16, 37–39]. It was assumed already by Kobayashi et al [37]
that the negative Knight shifts of the noble metals in the corresponding alloys with Pd and
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(2)’ were measured at 291 K [35] and 421 K [13], respectively.

Pt are not due to the polarization of the core electrons, as in the case of pure Pd [40], but
due to the influence of the host metals Pd and Pt stemming from their strongly enhanced
spin susceptibility. The underlying mechanism giving rise to the observed negative Knight
shift was always assumed to be essentially the same as that leading to the negative hyperfine
field of the noble metals dissolved in a ferromagnetic host metal [2]. This assumption can
now be verified in a quite straightforward way by the calculation of the spin contributions
to the Knight shifts of each component in the alloy systems AgxPd1−x and AgxPt1−x. A
non-relativistic formulation for the Knight shift in metals due to the Fermi contact interaction
within the framework of the KKR formalism was already given by Gyorffy [41] nearly
30 years ago. The formalism sketched above allows a straightforward fully relativistic
extension [5] using the expression

K = − e

πBext
�

∫ EF

dE
(�r × �α)z

r3 GB(�r, �r, E) (11)

where the observable in the integral corresponds to the vector potential stemming from the
nuclear magnetic dipole moment [20]. Inserting the Green’s function GB(�r, �r, E) according to
equation (2), one notes that there are contributions to K because of the coupling of an external
magnetic field to the spin (�Hspin) as well as to the orbital degree of freedom (�Horb) of the
electrons. Furthermore, one notes that the Stoner mechanism leads to an enhancement of the
corresponding shift contributions as for the spin and orbital susceptibilities, χspin and χVV,
respectively.

The calculated valence band spin contributions to the Knight shifts without and with Stoner
enhancement,K0

spin and Kspin, respectively, for each component in AgxPd1−x and AgxPt1−x are
shown in figure 7. In addition, the contributions from the core polarization Kcp that correspond
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Figure 7. Calculated spin contributions without (K0
spin) and with Stoner enhancement (Kspin) and

the core polarization contribution (Kcp) to the Knight shifts of Ag, Pd and Pt in AgxPd1−x and
AgxPt1−x.

to the enhanced spin susceptibilities χα
spin are given. Due to the large spin magnetization of Pd

and Pt on the Ag-poor side for both alloy systems, the contributions from the core polarization
Kcp for Pd and Pt are very large. They decrease rapidly with increasing Ag concentration x
and thus with decreasing spin magnetization, as shown in the top panel of figure 7. For Ag, on
the other hand, the core polarization contributions are nearly zero in the two alloy systems, as
can be seen in the lower panel of the figure. However, the Stoner-enhanced spin contribution
to the Knight shift of Ag, for both alloys, has relatively large absolute value with a negative
sign on the Ag-poor side, which is attributed to inter-atomic effects arising from the strong
induced spin magnetization of the corresponding transition metal, Pd or Pt. This finding is
completely in line with the results of our previous calculations [14, 42] that included the effect
of an external magnetic field in the SCF cycle. The analysis of the induced spin density of
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the various components in the alloys Ag0.10Pd0.90 and Cu0.10Pd0.90 demonstrated that for Pd
the core polarization dominates the magnetization at the nuclear site. For Ag and Cu, on the
other hand, the Stoner-enhanced spin density of the valence electrons has negative sign and is
responsible for the main part in the magnetization at the nuclear site. Since the spin density
at a nuclear site leads to the Fermi contact contributions to the Knight shift, it was concluded
that the negative Knight shift of the noble metal arises from the large induced spin moment
of neighbouring Pd atoms in the alloy, instead of from the much smaller magnetization within
the atomic cell of Ag or Cu. Obviously, the calculated results shown in figure 7 are in full
accordance with this interpretation.

As can be seen in figure 7, the unenhanced spin contributionK0
spin to the Knight shift

for each component in the two alloys shows a similar trend, i.e. it increases smoothly with
increasing Ag concentration. This seems to be primarily due to the fact that the conventional
Fermi contact contribution is included in K0

spin. Within a simplified approach [43], this
contribution is proportional to the s-like density of states at the Fermi energy and the
corresponding coupling constant or hyperfine field. Indeed, the s component of the DOS
at EF shows a smooth increase for each component with increasing Ag concentration, leading
in this way to the corresponding increase of the contribution K0

spin.
In contrast to the case for most previous theoretical investigations on Knight shifts, the

Van Vleck contribution was calculated as well. As for the corresponding contribution to the
Van Vleck susceptibility χVV, the OP enhancement was also considered, in addition. As in
the case of χVV, the orbital contributions to the Knight shifts of Pd and Pt do not change
much over the entire concentration range and are much larger than those of Ag in both alloy
systems. Due to the larger atomic number of Pt compared with that of Pd, K0

VV as well as
KVV is larger for Pt than for Pd. For Ag the situation is again very similar for the two alloy
systems. In particular, one finds, as for the corresponding Van Vleck susceptibility χ

Ag
VV, that

the OP enhancement is very small.
The diamagnetic contributions Kdia to the Knight shifts for each component in the two alloy

systems hardly change over the entire concentration range. For Pt the absolute value of Kdia is
about two times larger than for the other components in the alloy systems. For Pd as well as Pt,
the orbital Van Vleck contributions KVVare larger than the absolute values of the corresponding
diamagnetic contributions Kdia. For Ag, on the other hand, the situation is just the reverse.

The experimental Knight shifts of Ag and Pt in AgxPt1−x could be determined by using
samples rapidly quenched from the melt [16, 44]. Corresponding experimental data for Ag in
AgxPd1−x are also available [2]. Because the huge quadrupole moment of Pd gives rise to an
extremely broad line resulting in a very weak NMR signal, it only became possible to detect
the Pd NMR for Pd-rich AgxPd1−x recently [14].

The calculated total Knight shifts Ktheory = Kspin + KVV + Kcp + Kdia for the various
components in the alloy systems AgxPd1−x and AgxPt1−x, compared with the corresponding
experimental data, are shown in figure 8. Obviously, the main features of the measured data
are well reproduced by the theoretical results. The negative Knight shift of Pd has a larger
absolute value than the corresponding one of Pt on the Ag-poor side for both alloy systems.
This is mainly due to the stronger core polarization, which arises from the Stoner enhancement
of the Pauli spin susceptibility. On the Ag-rich side, the Knight shift of Pt is somewhat larger
than that of Pd. This is because Pt has larger spin as well as orbital contributions to its Knight
shift than Pd in that concentration range.

Comparing the theoretical and experimental results for Ag in the two alloy systems, one
finds that the Knight shifts of Ag in the two alloy systems do not differ much for x > 0.30. Their
large difference on the Ag-poor side is attributed to the influence of Pd on Ag in AgxPd1−x, with
its large Stoner-enhanced spin magnetization, being stronger than that of Pt on Ag in AgxPt1−x.
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Figure 8. Calculated total Knight shifts of Ag and B in AgxB1−x (B = Pd, Pt) in comparison with
the experimental data [2, 14, 16, 44] .

For the Ag-poor side of the alloy systems one notes a rather pronounced deviation of the
calculated Knight shifts of the alloy partners Pd and Pt from the corresponding experimental
data. This has to be attributed to a large extent to problems in dealing with the core polarization
mechanism within the framework of plain SDFT. The same problem is present when dealing
with the corresponding core polarization hyperfine field in spontaneously magnetized solids
which in general is also found to be too small compared with experiment. Recently, it became
possible to demonstrate, using the so-called optimized potential method (OPM), that the core
polarization hyperfine field is strongly increased compared with plain SDFT-type calculations,
leading to a satisfying agreement with experiment [45]. From this, one can conclude that an
improved treatment of the core polarization Knight shift Kcpshould also improve the agreement
with experiment in figure 8. Finally, it should be noted that there is always some ambiguity
concerning the reference on which the experimental Knight shift is based [43].
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